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Abstract

Some damping models where the actual stress does not depend on the actual strain but also on the entire
strain history are studied[ Basic requirements in the frequency and time domain signi_cant for the choice of
damping model are outlined[ A one!dimensional linear constitutive viscoelastic equation is considered[ Three
di}erent equivalent constitutive equations describing the viscoelastic model are presented[ The constitutive
relation on the convolution integral form is studied in particular[ A closed form expression for the memory
kernel corresponding to the fractional derivative model of viscoelasticity is given[ The memory kernel is
examined with respect to its regularity and asymptotic behavior[ The memory kernel|s relation to the
fractional derivative operator is discussed in particular and the fractional derivative of the convolution term
is derived[ The fractional derivative model is also given by two coupled equations using an {{internal
variable||[ The inclusion of the fractional derivative constitutive equation in the equations of motion for a
viscoelastic structure is discussed[ We suggest a formulation of the structural equations that involves the
convolution integral description of the fractional derivative model of viscoelasticity[ This form is shown to
possess several mathematical advantages compared to an often used formulation that involves a fractional
derivative operator form of constitutive relation[ An e.cient time discretization algorithm\ based on New!
mark|s method\ for solving the structural equations is presented and some numerical examples are given[ A
simpli_cation of the fractional derivative of the memory kernel\ derived in the present study\ is then
employed\ which avoids the actual evaluation of the memory kernel[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

Perfectly elastic behavior of a material is an idealization^ in reality in!elasticity is always present
even at very low strains[ This in!elasticity leads to energy dissipation or "material# damping[ In
the present study the energy dissipation is assumed to occur within the continuum element[ The
material is assumed to have a viscoelastic constitutive relation between stress and strain[
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Material damping is commonly quanti_ed by loss factor h which is the ratio between energy lost
and maximum energy stored within the continuum element under steady!state harmonic conditions[
For linear materials the loss factor can be expressed as the ratio between the imaginary part and
the real part of the complex modulus of elasticity in the frequency domain[ Material damping is
in the engineering community commonly approximated by a frequency independent modulus of
elasticity in the frequency domain "i[e[\ by a constant loss factor#[ This constitutive model has no
reasonable representation in the time domain[ When extrapolated to the entire frequency domain
this model represents a non!causal relation between stress and strain "i[e[\ it allows response before
excitation\ see Crandall\ 0869#[ This unphysical behavior is overlooked in a _xed frequency analysis
but when studying energy propagation phenomena and transient analysis this behavior is believed
to be crucial[ Even in a _xed frequency analysis it might be important to use a physically correct
model[ Another model often employed for approximating hysteretic damping is the so!called
viscous damping[ In this model the energy losses are proportional to the excitation frequency and
the imaginary part of the complex modulus of elasticity is thus proportional to the excitation
frequency[ This model can be represented by the Kelvin model in the time domain where the stress
is taken as the sum of parts proportional to the strain and the strain rate[ The viscous model is
often used due to its simplicity and mathematical convenience[ Unfortunately this model is not
appropriate for describing a wide class of nearly elastic engineering materials[ For example\ there
is no instantaneous response upon a sudden change in stress\ and the resulting loss factor is
proportional to the excitation frequency[ Engineering materials in general do not show this
frequency dependence in their measured loss factors[ Instead\ it is found experimentally that many
engineering materials show loss factors that are almost independent of excitation frequency over
several frequency decades\ see Kimball and Lovell "0816#[ Paradoxically\ this resembles more the
unphysical model referred to above[

In the present study we focus on some of the principles that should guide our choice of damping
model[ The basic requirements that should be imposed on any constitutive model are "see Bowen\
0878#] consistency with fundamental axioms of mass\ energy and momentum balance\ as well as
thermodynamic laws\ coordinate and frame invariance\ spatial locality and causality[ A further
requirement which concerns damping is the dissipativity condition "i[e[\ that energy should be
dissipated from the system rather than introduced#[

A special class of constitutive models having a fading memory\ i[e[\ the stress that produces a
strain does not only depend on the current strain but also on the previous strain history in such
manner that the current stress depends stronger on the recent strain history than on the distant
strain history\ is studied in particular[ The linear constitutive equation can be formulated on
integral\ hereditary or convolution form[ The model is due to Boltzmann "0765#[ The regularity
conditions that should apply for the kernel function in the hereditary model are discussed below[
The hereditary model is\ by its kernel or memory function\ related to viscoelastic models such as
that recently used by Lesieutre "0881#\ and the fractional derivative model of viscoelasticity\ see
Bagley and Torvik "0872#[ The fractional derivative model of viscoelasticity is formulated on
integral form and a closed form expression for the corresponding memory function is given[ How
to include the fractional derivative model of viscoelasticity into structural equations of motion for
a viscoelastic structure is discussed[ We prefer to use a formulation of the structural equations that
involves the constitutive equation of viscoelasticity on integral form[ Finally\ an algorithm for
solving the structural equations of motion for a discretized fractional calculus viscoelastic system
is given and some examples for a one!degree of freedom system are presented[
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1[ Constitutive equations of linear viscoelasticity

The one!dimensional linear constitutive equation of viscoelasticity in the time domain on
di}erential operator form is often written as

s
m

k�9

pk

dks"t#

dtk
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"0#

where s"t# denotes the stress\ o"t# is the strain and pk and qk are material parameters[ Here\ as in
the whole present study\ isothermal conditions are assumed and only uniaxial stress states are
considered[ Note that this form represents a non!unique relation between stress and strain\ since
there is a need of a set of initial conditions[ A suitable set of initial conditions is given in Fung
"0854#[ These conditions are
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Physically the conditions in eqn "1# mean that there is a direct relation between stress and strain\
i[e[\ there cannot initially exist a strain or a strain derivative without there being any stress or stress
derivatives[

A more general constitutive equation of linear viscoelasticity is the convolution integral form

s"t# �
d
dt $g

t

−�

Erel "t−t#o"t# dt% "2#

where Erel"t# is the stress relaxation funtion "i[e[\ the stress response on a unit strain deformation#[
Note that eqn "2# is a more general form than eqn "0# and we will apply eqn "2# on forms that are
not reducible to eqn "0#[ To describe the same viscoelastic behavior as eqn "0# together with the
initial conditions in eqn "1# the relaxation modulus should be chosen as

Erel "t# � E− s
N

k�0

DEk"0−e−t:bk# "3#

Here DEk and bk are the relaxation strength and the relaxation time corresponding to the k!th
dissipative mechanism[ The correspondence between eqns "0# and "2# can be shown by applying
the Laplace transform to the equations\ see Fung "0854#[ Note that eqn "2# does not need explicit
initial conditions since they are automatically accounted for[ An alternative form of eqn "2# is
obtained by application of the Leibnitz rule

s"t# � E 0o"t#−" f( o#"t#1� E 0o"t#−g
t

9

f"t−t#o"t# dt1 "4#

if the initial strain is o"t# � 9 for t ³ 9[ Here E � Erel"9# is the unrelaxed or instantaneous modulus
and f"t# is the kernel or memory function[ Causality requirements enforce f"t# to be a causal
function "i[e[\ it vanishes for t ³ 9#[ The memory function is here related to the relaxation modulus
as
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f"t# � −
0
E

dErel "t#
dt

\ t × 9 "5#

2[ Frequency domain considerations

The Fourier transform is here de_ned as

Fðx"t#Ł"v# � X"v# � g
�

−�

x"t# e−ivt dt "6#

The correspondence to eqn "4# in the frequency domain\ assuming that there exist such a cor!
respondence\ can be written as

s"v# � E"0−F"v##o"v# 0 E�"v#o"v# "7#

where s"v# and o"v# are the Fourier transforms of stress and strain and F"v# is the Fourier
transform of the kernel[ E�"v# is de_ned as the complex frequency dependent modulus of elasticity[

If we insist on modeling the viscoelastic behavior in the frequency domain there are a number
of basic requirements that must be taken into consideration]

"0# The dissipativity condition states that energy should be removed rather than imposed[
"1# The positivity condition on the relaxed sti}ness[
"2# The causality condition which implies that the function F"v# must be the Fourier integral of

a causal function[

The dissipativity condition and the positivity assumption can be formulated for the complex
modulus E�"v# as

IE�"v# � IE"0−F"v## × 9 for v × 9 and IE� odd "8a#

RE�"9# � RE"0−F"9## × 9 "8b#

Here I and R denote imaginary and real parts\ respectively[
We are not aware of any completely general solution to the problem of determining whether

F"v# is a Fourier transform of a causal function or not[ However\ if F"v# is square integrable
"F"v# $ L1"R#^ for the de_nition of Lp Banach spaces\ see Richtmyer "0867#^ R denotes the set of
reals#\ one can establish a necessary and su.cient condition for F"v# to be a Fourier integral of a
causal function f"t#[ The real and imaginary part of F"v# must then be related to each other as
Hilbert transforms and thus satisfy the equations

IF"v# � −
0
p

P g
�
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0
p
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where PÐ is a Cauchy principal value[ These relations are essentially the KramersÐKronig relations
in electrodynamics[
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If F"v# $ L1"R#\ the PaleyÐWiener theorem "see Papoulis\ 0851# provides a necessary condition
for causality[ This theorem states that a necessary and su.cient condition for a real non!negative
function A"v# $ L1"R# to be the amplitude of the Fourier transform of a causal function is that

g
�

−�

= ln"A"v## =
v1¦0

dv ³ � "00#

Taking A"v# � =F"v# =\ we have a necessary condition on F"v# $ L1"R# to be the transform of a
causal function[ One may note two things[ The condition on F"v# is not a su.cient condition^ it
can only be used to rule out unsuitable candidates[ The reason for this is that the phase function
of F"v# might be such that f"t# � F−0ðF"v#Ł is non!causal even though A"v# � =F"v# = satis_es
eqn "00#[ The second point is that the proof of the PaleyÐWiener theorem "Papoulis\ 0851# involves
the construction of a phase function u"v# which makes A"v# e−iu"v# the Fourier transform of a
causal function[ This is useful in a situation where only the amplitude but not the phase of the
function F"v# is known[

Apart from the KramersÐKronig relations and the PaleyÐWiener theorem there are of course
other frequency domain tests available for causality[ One such goes back to Jordan|s lemma "see
Papoulis\ 0851#[ A su.cient condition for the square!integrable function F"v# to be the Fourier
transform of a causal function is that F"v# is analytic in the "closed# lower half plane " for the
present de_nition of the Fourier transform# and tends to zero as v : � in that half plane[

3[ Time domain considerations

3[0[ Re`ularity assumptions

In this section we make some comments on the signi_cance of regularity assumptions imposed
on the kernel function f"t#[ To make a rigorous mathematical analysis of these conditions falls far
outside the present study[ However\ there are some points signi_cant for the choice of damping
model that need to be stressed[

Let us from the outset exclude delta function and delta function derivative behavior from the
memory kernel^ if viscous damping is to be included this can be done simply by adding such a term
by hand[ The convolution integral we interpret in the ordinary Lebesgue sense[

The _rst and most important point to recognize is the duality that exists between the regularity
of the kernel function on the one hand and the strain history on the other hand[ To make the
convolution integral well de_ned for any strain histories lying in\ e[g[\ Lp"R#\ the memory kernel
cannot be chosen arbitrarily[ The reason is of course that singularities\ or far past history\ of the
strain can make the integral divergent if care is not taken in the choice of memory kernel[
Essentially\ the greater the freedom in strain histories\ the less freedom in the choice of kernel
function[ "For strain histories in Lp"R#\ it is su.cient that f"t# $ Lq"R#\ with p−0¦q−0 � 0¦r−0\
for the convolution to be well de_ned and belong to Lr"R#[# To take one extreme example of this\
we note that if there is no restriction at all on the size of the strain in the far past "in which case
o need not $ Lp"R# for any p#\ the memory kernel must be of bounded support\ see Ho�gfors and
Andersson "0881#[ This means that in such a case the memory can only extend a _nite time into
the past[
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A second point to be recognized is that if one insists on doing the modeling of the damping
mechanism in the frequency domain rather than in the time domain\ there are pitfalls that must
be avoided\ apart from the ones connected to the causality requirement as discussed above[ An
example of this is the following[ Let us say that we for some reason\ e[g[\ because of duality
requirements\ know that f $ L0"R#[ This has certain interesting consequences[ By the RiemannÐ
Lebesgue lemma\ see Reed and Simon "0864#\ the Fourier transform f"t# will be in C�"R#\ the
space of continuous functions vanishing at in_nity[ A discontinuous imaginary part of the complex
modulus is in such a case not possible; Furthermore\ we may note that the mapping L0"R# :
F C�"R# is not surjective\ i[e[\ even if we do choose a continuous complex modulus\ even one which
complies with the requirement of vanishing at in_nity\ we can still not be sure that the time domain
memory kernel belongs to L0"R#[ As another example] in Fabrizio et al[ "0883#\ it is argued that
minimal assumptions on the memory kernel are that it should lie not merely in L0"R#\ but in
L0"R# K L1"R#[ This has certain consequences\ one of them being that if f"9¦# exists\ the Fourier
transform of the memory kernel cannot be chosen arbitrarily\ but must be in L0"R# K L1"R#[
"Under these more restrictive assumptions\ it is then straightforward to formulate relations which
must hold for the Fourier transform of the kernel\ like the KramersÐKronig relations given above[#

3[1[ Time domain dissipativity

In this section we give restrictions on the stress relaxation function for the constitutive relation
to be dissipative[ The internal or dissipative work done in any _nite process starting from the
material virgin state to time t must be non!negative

W � g
t

9

s"s#
1o"s#
1s

ds � g
t

9 g
t

9

Erel "s−t#
1o"t#
1t

1o"s#
1s

dt ds − 9 "01#

where the constitutive relation in eqn "2# has been used[ Here it is assumed that the strain is zero
for negative times and that Erel is and even function "since it is a causal function#[ It follows from
the BochnerÐSchwartz theorem that the dissipation inequality eqn "01# is satis_ed if the kernel Erel

is a function of positive type "Reed and Simon\ 0864#[ This condition is satis_ed\ e[g[\ if "see
Rabotnov\ 0879^ Breuer and Onat\ 0851#

, Erel is a non!negative bounded function montonically decreasing as t : �
, Erel is convex from below for t × 9[

3[2[ Fadin` memory

A third point to recognize is that any reasonable memory kernel should of course in some sense
represent a fading memory[ In the present paper we discuss a few examples of memory kernels
corresponding to di}erent damping models[ It should be noted that in these examples the fading
memory requirement is satis_ed in the rather strict sense that the memory kernel f"t# is strictly
monotonic and decreasing towards zero as a function of time[ Conditions for complete mon!
otonicity of the kernel function is discussed by Day "0856#[ Fading memory properties of systems
and materials are throughout fully discussed by Coleman and Mizel "0856# more recently by
Fabrizio et al[ "0883#[
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A survey of restrictions on kernel functions from thermodynamic considerations are given in
the book by Day "0861#[

4[ Exponentially decaying memory kernel

For a material having monotonically exponentially decaying memory the causal kernel takes
the form ðcf eqns "3# and "5#Ł

f"t# � s
m

k�0 0
0
Tk

e−t:bk1\ t × 9 "02#

which is in L0"R# K L1"R#[ Here bk are the relaxation times and Tk are positive constants of
dimension time[ The time constants may be expressed as

Tk �
Ebk

DEk

"03#

The kernel in eqn "02# can be thermodynamically motivated from irreversible thermodynamics by
the introduction of a physically signi_cant internal variable\ see\ e[g[\ Nowick and Berry "0861#
and Biot "0845#[

The stressÐstrain relation in the frequency domain becomes

s"v# � E�"v#o"v# � E $0− s
m

k�0 0
bk

Tk 0
0

0¦v1b1
k1−i

bk

Tk 0
vbk

0¦v1b1
k1%o"v# "04#

The parameters Tk and bk are _tted to measured data[ Note that to satisfy the positivity assumption
on the relaxed sti}ness eqn "8b# the parameters must be chosen so that E� is positive

E� � E−E s
m

k�0

bk:Tk � E− s
m

k�0

DEk × 9 "05#

The causality requirement is naturally ful_lled due to the fact that the original relations in the time
domain are causal[ For high frequencies v : � the resulting modulus E�"v# approaches the
instantaneous modulus E and for low frequencies v : 9 the modulus approaches the long time or
relaxed modulus E�[

5[ Fractional derivative model of viscoelasticity

To solve the structural equations of motion including a viscoelastic material with a constitutive
relation involving several memory kernels is an intractable task[ A fractional order derivative
model of viscoelasticity is known to require fewer parameters\ typically four\ to model the actual
weak frequency dependence of the complex modulus for engineering materials[ Bagley and Torvik
"0872# reached a good agreement when they _tted their fractional calculus model to measured
data for an elastomer[

The simplest fractional derivative model of viscoelasticity takes the form
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s"t#¦ba Das"t# � E�o"t#¦Eba Dao"t# "06#

where b can be seen as a "generalized# relaxation time with dimension time and Da is a generalized
di}erentiation operator of order a[ Note that the relation eqn "06# is not unique[ Since derivative
operators are involved there is a need for an initial condition[ Di}erentiation of general order a

can be de_ned as the convolution\ see Gel|fand and Shilov "0853#\

DÞax"t# 0"x ( F−a#"t#\ a × 9 "07#

where

F−a"t# �
t−0−a
¦

G"−a#
"08#

where G is the gamma function

G"x# 0 g
�

9

e−ttx−0 dt\ Rx × 9 "19#

with analytical continuation to RðxŁ ¾ 9\ x ( 9\ −0\ −1\ −2 [ [ [ and t¦ is\

t¦ � 6
t t × 9

9 t ³ 9
"10#

The operator DÞa de_ned above is a distributional derivative operator ði[e[\ it incorporates the
behavior at the singularity point "t � 9# explicitlyŁ[ The convolution integral is divergent and must
be interpreted in the sense of its regularization[ The same de_nition applies for integration of
fractional order by a formal replacement of a by −a\ the integral expression is then convergent
for su.ciently regular x"t#[ A convergent integral expression for ordinary di}erentiation of frac!
tional order can be obtained by _rst applying a derivative of integer order and then integrating of
fractional order[ The trick is to write the fractional order operator as

Da � DN−r � DN D−r "11#

where N is an integer that satis_es a ³ N ¾ a¦0 and 9 ³ r ¾ 0[ The last factor in eqn "11# is in
fact an fractional integration[ Di}erentiation of arbitrary order can now be de_ned by a convergent
integral expression as

Dax"t# 0 DN−rx"t## 0
dN

dtN $
0

G"r# g
t

9

"t−t# "r−0#x"t# dt%\ 9 ³ r ¾ 0 "12#

The trick above\ eqn "11#\ can be justi_ed by the fact that DN−r can be taken as the analytical
continuation of Dq\ see Ross "0864#[ For a causal function the distributional fractional order
derivative is equal to the ordinary fractional order derivative with the exception of points where
the ordinary fractional derivative does not exist[

Specializing to 9 ³ a ³ 0 which is the interesting interval for the application of fractional calculus
to viscoelasticity\ the de_nition of fractional derivative can be written as
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Dax"t# 0
0

G"0−a#
d
dt $g

t

9

x"t#

"t−t#a
dt%\ 9 ³ a ³ 0 "13#

One may note that the fractional di}erential operator is not a local operator\ i[e[\ the derivative is
not only dependent of the value at the point but the value of the function on the whole interval[
As seen from the de_nition in eqn "12# the fractional di}erentiation operator produces the same
results as the ordinary operator of integer order if a is a positive integer[ This is true also for the
de_nition in eqn "07#\ Gel|fand and Shilov "0853#[

5[0[ Frequency and Laplace domain properties

In the time domain the presence of integro!di}erential operators makes the solution of the
structural equations computationally more complex than do the ordinary operators[ However\ in
the frequency and the Laplace domains the model becomes easy to handle\ apart from the question
how to choose the branch of the root in the Fourier transform of the fractional derivative operator[

The Laplace transform is here de_ned as

Lðx"t#Ł"s# � g
�

9¦

x"t# est dt "14#

When x"t# or its derivatives have singularities at t � 9\ it is necessary to choose between taking
either 9¦ or 9− as lower limit in the integral in eqn "14#[ The Laplace transform of the "ordinary#
fractional order derivative is\ see Oldham and Spanier "0863#\

LðDax"t#Ł � saLðx"t#Ł− s
n−0

k�9

sk Da−0−kx"9¦# "15#

where n is an integer such that n−0 ³ a ¾ n[ Note the occurrence of initial conditions of fractional
order in eqn "15#[ One might argue that with a translation of the time scale one can always prescribe
homogeneous initial conditions i[e[\ Da−0−kx"9¦# � 9 for k $ ð9\ n−0Ł[ However\ by using theorems
for translation and transformation for the derivative of general order we have

Lð9DbH"t−t9#x"t#Ł � sbLðH"t−t9#x"t#Ł−e−st9 s
n−0

k�9

sk
t9 Db−0−kx"t¦9 # "16#

where n−0 ³ b ¾ n[ Index in lower left of derivative operator denotes lower limit in the con!
volution integral de_ning the fractional order di}erentiation operator see eqn "12#[ It is thus not
possible to overcome the problem of the initial values by a translation of the time scale[ The
Laplace transformation of the distributional derivative operator is simply

LðDÞax"t#Ł � saLðx"t#Ł "17#

A unique expression for the Fourier transformation of the fractional derivative operator is\ see
Gel|fand and Shilov "0853#\ "note the di}erence in the de_nitions of the Fourier transform between
Gel|fand and Shilov and the present paper#



M[ Enelund\ P[ Olsson : International Journal of Solids and Structures 25 "0888# 828Ð869837

FðDÞax"t#Ł � eiap:1"v−i9¦#aFðx"t#Ł "18#

where "v−i9¦#a should be interpreted as

"v−i9¦#a � 6
e−iap =v=a v ³ 9

va v × 9
"29#

From now on we write the Fourier transformation of the fractional derivative of order a

FðDÞax"t#Ł �"iv#aFðx"t#Ł "20#

with the understanding that "iv#a should be interpreted as exp"iap:1#"v−i9¦#a[
The frequency domain constitutive equation corresponding to the fractional derivative model

of viscoelasticity can now be written as

s"v# � E 00−
0−E�:E

0¦"biv#a1o"v# � E"0−F"v##o"v# "21#

Figure 0 shows the frequency dependence of the loss factor corresponding to the complex modulus
of the fractional derivative model in eqn "06# for di}erent values of a $"9\ 0Ł[ A small value for a

gives a weak frequency dependence of the loss factor[

5[1[ Fractional derivative model on convolution inte`ral form

The Laplace domain constitutive equation corresponding to the fractional derivative model of
viscoelasticity\ eqn "06#\ can be written as

s"s# � E 00−
0−E�:E

0¦"bs#a 1o"s# � E"0−F"s##o"s# "22#

together with the initial condition

Fig[ 0[ Loss factor vs normalized angular frequency vb[ The in~uence of di}erent values of a $"9\ 0Ł\ is shown for
E�:E � 0:1[
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D−"0−a#s"9¦# � E D−"0−a#o"9¦# "23#

which\ for 9 ³ a ³ 0\ is a fractional integrated form of Hooke|s law and thus a weaker condition
than Hooke|s law[

The correspondence to eqn "06# on hereditary or integral form can be formally obtained from
eqn "22# by use of the Laplace convolution theorem\ assuming that the convolution is well de_ned\

s"t# � E"o"t#−" fa ( o#"t## t × 9 "24#

where fa"t# is the inverse Laplace transform of F"s# in eqn "22#[ F"s# is not in L0"R# but it is in
Lp"R# for p × 0:a[ The inverse can be found as

fa"t# � L−0 $
0−E�:E

0¦"bs#a %"t#\ t × 9 "25#

Take c × 9 so that ="bc#−a= ³ 0[ Along the vertical line c−i� to c¦i� we write]

0

0¦"bs#a
�

0

"bs#a 0
0

0¦"bs#−a1� s
�

n�9

"−0#n""bs#a#−n−0 "26#

which converges uniformly on the vertical line in consideration[ For t × 9 fa"t# can then be written
as a line integral]

fa"t# � L−0 ðFa"s#Ł"t# �
0

1pi g
c¦i�

c−i�

Fa"s# est ds

� 00−
E�

E 1 s
�

n�9

0
1pi g

c¦i�

c−i�

"−0#n""bs#a#−n−0 est ds

� 00−
E�

E 1 s
�

n�9

L−0 ð"−0#n""bs#a#−n−0Ł\ t × 9 "27#

By use of a standard table of Laplace transforms\ see Oberhettinger and Badii "0862# p[ 126\ we
obtain

fa"t# � 00−
E�

E 1 s
�

n�9

"−0#nb−0 "t:b#a"n¦0#−0

G"a"n¦0##

� 00−
E�

E 1 s
�

n�0

"−0#n¦0b−0 "t:b#an−0

G"an#
\ t × 9 "28#

or\ in MittagÐLe/er notation

fa"t# � 00−
E�

E 1 0−
d
dt

ðEa"−"t:b#a#Ł1 "39#

where Ea is the a!order MittagÐLe/er function\ which is de_ned as "Bateman\ 0844#
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Ea"x# � s
�

n�9

xn

G"0¦an#
"30#

Kernel functions of MittagÐLe/er function type were introduced into linear viscoelasticity by
Rabotnov "0879# and the connection to the use of fractional derivative operators in constitutive
equations of linear viscoelasticity was established by Koeller "0873#[

The asymptotic behavior of fa"t# as n : � is obtained by use of Stirling|s formula] "Abramowitz
and Stegun\ 0854#

G"z# ½ z1p e−zzz−0:1\ =z= : � and =arg= ³ p "31#

The asymptotic behavior of the nth term is then

f n
a"t# 0 00−

E�

E 1"−0#n¦0b−0 "t:b#an−0

G"an#

½ 00−
E�

E 1"−0#n b−0"t:b#an−0

z1p e−na"na#na−0:1
as n : � "32#

For a given t the ratio test gives

b
f n¦0

a

f n
a b½ 0

t:b
"n¦0#a1

a

: 9 as n : � "33#

so that the series is convergent[ But\ as seen from the ratio above\ the convergence is very poor[
For a given t we need to add

n ×
"t:b#
a

−0 "34#

terms before we can expect the terms to begin to fall o} in size[ If a high number of term is to be
included in the sum when evaluating fa"t# the numerical stability is lost[

Consider the case of a � 0\ then eqn "28# becomes

f0"t# � 00−
E�

E 1
0
b

s
�

n�0 0"−0#n¦0 "t:b# "n−0#

G"n# 1� 00−
E�

E 1
0
b

e−t:b\ t × 9 "35#

which is the exponentially decaying memory kernel as expected[ Specializing eqn "28# to a � 0:1
gives for t × 9

f0:1"t# � 00−
E�

E 1
0
b 0

0

zpt:b
−et:b erfc"zt:b#1 "36#

where erfc"x# � 0−erf"x# is the complementary error function[
Due to the {{symmetry|| between stress and strain in the formulation of the fractional derivative

constitutive equation of viscoelasticity eqn "06# we can easily formulate the inverse to eqn "24#\
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o"t# �
0
E

"s"t#¦"`a ( s#"t##\ t × 9 "37a#

`a"t# �
0
l 0

E
E�

−01 s
�

n�0

"−0#n¦0 "t:l#an−0

G"an#
\ t × 9 "37b#

where l � b"E:E�#0:a is the {{generalized|| relaxation time with respect to constant stress[

5[2[ Asymptotic expansion of the memory kernel

From reasons mentioned in Section "5[1# it is obvious that the expression for fa"t#\ eqn "28#\ is
not of practical use for increasing values of t\ and there is a need for an asymptotic expression for
fa"t# for large times[ Concerning the asymptotic behavior of the functions fa"t#\ we utilize a formal
mode of reasoning which in van der Pol and Bremmer "0864# is attributed to Heaviside[ "For a
recent application of this mode of reasoning to wave splitting in structural dynamics\ see Olsson
and Kristensson\ 0883#[

Expanding the Laplace transform of fa"t# according to eqn "28# for small s × 9 gives

Lð fa"t#Ł"s# � 00−
E�

E 1 s
�

n�9

"−0#n"bs#an "38#

with convergence in a radially cut circular region of radius b[ Formal term!wise inversion then
yields an asymptotic series for fa"t# as t : �]

fa"t# ½ 00−
E�

E 1 s
�

n�0

"−0#nb−0 "t:b#−an−0

G"−an#
as t : � "49#

where the term n � 9\ and in fact any term with integer an\ drops out of the asymptotic series due
to the fact that t × 9 is considered[ "They represent terms with support concentrated at t � 9[#

We emphasize that the above derivation is purely formal and requires detailed veri_cation which
we will not attempt here\ see van der Pol and Bremmer "0864#[ However\ numerical calculations
verify that the sum of the _rst few terms in the formal asymptotic series do indeed approximate
fa"t# well for large t[ Further\ for the case of a � 0:1 the asymptotic series according to eqn "49#
correctly reproduces the result of inserting the asymptotic expansion of et erfc "zt#\ see Abramowitz
and Stegun "0854#\ into eqn "36#]

f0:1"t# ½ −00−
E�

E 1
0
b

0

zpt:b
s
�

m�0

"−0#m "1m−0#;;

"1t:b#m
as t : � "40#

Note that the asymptotic expansion can speed up the calculations of fa"t# for {{large|| times
considerably\ as well as improve the numerical stability of the calculation[ Instead of having to
sum perhaps hundreds of terms in the {{one!sided Taylor expansion|| of fa in eqn "28#\ just a few
terms of the asymptotic series may su.ce[
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5[3[ Re`ularity properties of the memory kernel

To what Banach space "or spaces# Lp"R# does fa"t# belong< It is even integrable< According to
eqn "28# and the asymptotic series in eqn "49#\ we have

fa"t# ½ 6
O"ta−0#\ t : 9¦

O"t−a−0#\ t : ¦�
"41#

For a � 0 the behavior at temporal in_nity is even better\ but as can easily be seen\ it is the short
time behavior which is crucial here[ Since fa"t# is also continuous between these limits "and vanishes
for t ³ 9#\ every fa"t# belongs to L0"R#[ The continuity follows from the fact that tfa"t# for t × 9
coincides with an analytical function in the variable z � ta with a Laurent series convergent in the
annular region 9 ³ =z= ³ �[ However\ from the above considerations we also _nd that if 9 ³ a ³ 0

fa"t# $ Lp"R# for 0 ¾ p ³
0

0−a
"42#

while

fa"t# ( Lp"R# for p −
0

0−a
"43#

For a � 0\ fa"t# lies in all of the Lp"R# spaces\ including L�"R#[ The dual restrictions on the strain
histories can now be formulated as] for a given a $ "9\ 0#\ the strain histories should at least belong
to Lq

loc "R# for some q × 0:a and should of course vanish for t ³ 9[ This is to ensure that the
integrand in the convolution integral in eqn "24#\ " fa ( o#\ is at least in L0

loc[ Note that\ since no
restriction has been put on the long time behavior of the stress\ there is no need to demand that
the integrand should be in L0"R#[

Equations "42# and "43# have among their consequences that

fa"t# $ L0"R# K L1"R# only for a × 0
1

"44#

i[e[\ that only for fractional order of derivative strictly greater than 0:1 does the kernel satisfy what
in Fabrizio et al[ "0883# are designated as minimal assumptions on a memory kernel[ Note that
for a ¾ 0:1 the KramersÐKronig relations eqns "09a# and "09b# do not hold between the real and
imaginary parts of the Fourier transform of fa"t# "at least not in the ordinary sense#\ for the reason
that neither of them lies in L1"R# and are not in the usual domain of de_nition of the Hilbert
transform[

5[4[ Fractional derivatives of the memory kernel

In Oldham and Spanier "0863# it is noted that certain functions\ which with proper choice of a
parameter are proportional to fa"t#\ are eigenfunctions of the operator Da[ It is worthwhile to
elaborate a little on this property of the fa"t#\ as it is connected to some possibly useful formulae
for the time evolution of the convolution term in the constitutive relation[ Let us _rst consider the
convolution term fa ( o"t#[ Its fractional derivative of order a satis_es the following simple relation]
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ba Da" fa ( o#"t# � −" fa ( o#"t#¦00−
E�

E 1 o"t# "45#

This relation is connected to the fact that the constitutive equation on integral form\ eqn "24#\
with the memory kernel fa"t# according to eqn "28# when substituted into the original fractional
derivative constitutive equation\ eqn "06#\ should reduce it to an identity ðunder the initial condition
eqn "23#Ł[ The equation above can readily be demonstrated by Laplace transform methods\ or
alternatively by noting that

" fa � o#"t# � 00−
E�

E 1 s
�

n�0

"−0#n¦0b−na D−nao"t# "46#

which follows immediately from the series expansion of fa"t# together with the observation that
for negative orders\ and su.ciently well behaved o"t#\ the distributional derivative "which is then
a fractional integration# coincides with the ordinary derivative since no regularization of the
de_ning convolution integral is required in that case[ Operating with Da on this\ term!wise
evaluation requires evaluation of the composition Da D−na[ In the general case the composition
rule for fractional derivatives is a bit complicated\ see Oldham and Spanier "0863#[ However\ in
the case which is of interest here\ −na ³ 9 which allows us to infer that Da D−na"t# � D−"n−0#ao"t#\
which immediately yields eqn "45#[

If fa"t# is recognized as an eigenfunction of Da\ it may seem strange how eqn "45# could possibly
hold^ the problem is the last term on the right hand side of the expression[ Note however that fa"t#
satis_es not only the equation

Dafa"t# � −
0

ba
fa"t#\ t × 9 "47#

but also the initial condition

D−"0−a#fa"9¦# �
0

ba 00−
E�

E 1 "48#

in addition to being causal[ In terms of the distributional derivative this can be summed up in the
relation

ba DÞafa"t# � −fa"t#¦00−
E�

E 1 d"t# "59#

which is consistent with eqn "45#[
Another way of arriving at eqn "59# is by applying DÞa to the series expansion of fa"t# and making

use of the fact\ see Gel|fand and Shilov "0853#\

DÞa $
tna−0
¦

G"na#%� 8
t"n−0#a−0
¦

G""n−0#a#
n − 1

d"t# n � 0

"50#
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It is of course the n � 0 term which produces the delta term in eqn "59#[ But there is in fact no
contradiction between eqn "59# and the fact that fa"t# is an eigenfunction of Da[ Note that on the
interval t × 9 eqn "59# indeed states that Dafa"t# is proportional to fa"t#[ The presence of the delta
distribution term in the equation simply re~ects the fact that the fractional derivative operator in
Gel|fand and Shilov "0853# is a distributional derivative operator\ and thus incorporates the
behavior at t � 9 explicitly[ On the interval t × 9\ fa"t# is thus indeed an eigenfunction of the
fractional derivative operator of order a\ but as far as evaluation of convolutions with fa"t# is
considered\ the delta distribution term is essential\ as seen in eqn "45#[

Consider the causal Green|s function corresponding to the operator DÞa¦b−a[ The Green|s
function is the solution to

ðDÞa¦b−aŁ`"t\ t?# � d"t−t?#

`"t\ t?# � 9\ t ³ t? "51#

For t? � 9 this can be compared to eqn "59#\ which indicates that

fa"t# � 00−
E�

E 1
0

ba
`"t\ 9¦# "52#

However\ the composition of a translation and the fractional derivative is in general a non!trivial
operation\ see Gel|fand and Shilov "0853#[ The reason why this is a non!trivial composition is the
lower limit of integration in the de_nition of fractional derivative[ Gel|fand and Shilov "0853#
gives a rather forbidding expression for the fractional derivative of a function with translated
argument\ which for lower limit zero in the de_nition of the fractional derivative reads]

Daf"t¦A# �
daf"t¦A#

ðd"t¦A#Ła
− s

�

k�0

da¦k0

ðd"t¦A#Ła¦k

d−kf"A#

ðdAŁ−k
"53#

This makes the fractional derivative operator in general translationally non!invariant\ and seems
to prevent us from immediately inferring that

fa"t−t?# � 00−
E�

E 1
0

ba
`"t\ t?# "54#

But nevertheless\ eqn "54# is in fact correct[ To see that fa"t−t?# "apart from normalization# is the
causal Green|s function\ we may utilize the fact that\ see eqn "07#\

DÞ−nad"t−t?# �"d"t¼−t?# ( F−a"t¼##"t# �
"t−t?#na−0

¦

G"na#
"55#

to rewrite eqn "28# as

fa"t−t?# � 00−
E�

E 1 s
�

n�0

"−0#n¦0b−an D−nad"t−t?# "56#

Applying DÞa to this equation and composing operators as in the derivation of eqn "45# immediately
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yields eqn "54#[ Thus we see that the translated memory kernel is essentially the causal Green|s
function to the operator DÞa¦b−0[

How can it be that\ while it is not in general possible to commute translation and fractional
di}erentiation\ it is nonetheless possible to do so in the case of Green|s function corresponding to
DÞa¦b−a< There is a very simple answer to that question] for a causal function "which is a function
de_ned on the real line but vanishing on the negative half axis#\ fractional di}erentiation "with
lower limit 9\ as used in this context# commutes with any translation that does not shift any part
of the support of the function into the negative half axis[ In particular\ translation of a causal
function to the right always commutes with DÞa[ To see this we can make the following formal
calculation for a causal function h"t#]

DÞah"t−t?# � g
t

9

h"t−t¼−t?#F−a"t¼# dt¼� 8 g
t−t?

9

h""t−t?#−t¼#F−a"t¼# dt¼ t − t?

9 t ³ t?

"57#

where the integrals are assumed to be regularized\ and we have assumed t? × 9 "i[e[\ translation to
the right#[

Apart from its theoretical interest in connecting two di}erent formulations of the fractional
derivative model of viscoelasticity\ we believe that eqn "45# derived above is of some practical
importance in connection with the solution of the structural equations for a transient loaded
system involving this kind of viscoelastic material[ This we pursue further in Section 8[

5[5[ Stress relaxation function

Consider a specimen of a viscoelastic material having a constitutive relation involving fractional
derivatives as eqn "06#[ The stress relaxation function is the stress response of the specimen on a
unit step strain deformation\

o"t# � H"t# � 6
9 t ³ 9

0 t × 9
"58#

The stress relaxation function sa"t# or "Erel"t## can be obtained by introducing the step deformation
in the constitutive relation on integral form in eqn "24#\ hence

sa"t# � E 00−g
t

9

fa"t¼# dt¼1\ t × 9 "69#

Insertion of the memory kernel fa"t# according to eqn "28# and changing order of summation and
integration yield "t × 9#\

sa"t# � E 00−00−
E�

E 1 s
�

n�0

"−0#n¦0 "t:b#an

G"an¦0#1 "60#

or in MittagÐLe/er notation
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sa"t# � E 00−00−
E�

E 1"0−Ea ð−"t:b#aŁ#1 "61#

By use of the same method as in Section "5[1#\ an asymptotic series for sa"t# as t : ¦� is
obtained as

sa"t# ½ E 00−00−
E�

E 1 00¦ s
�

n�0

"−0#n "t:b#−na

G"−na¦0#11 "62#

where any term with an−0 equal to an integer drops out of the sum[
The short time "t : 9¦# and long time "t : ¦�# values of the stress relaxation function are

obtained from the expressions for sa"t# and the asymptotic series for sa"t# as t : � as\

lim
t:9

sa"t# � E "63a#

lim
t:�

sa"t# � E� "63b#

as of course they should be[
The stress relaxation function eqn "61# satis_es both the time domain dissipativity condition

eqn "01# and the fading memory hypothesis in Section 3[2 if the parameters are subjected to the
following restrictions E × E� × 9\ b × 9\ and 9 ³ a ¾ 0[ The reason for this is that the MittagÐ
Le/er function is a completely monotonic function " for 9 ³ a ¾ 0#\ "i[e[\ Bateman\ 0844#

"−0#n dn

dxn
"Ea ðxŁ# − 9\ n � 0\ 1\ 2\ [ [ [ "64#

If specializing to a � 0:1\ s0:1 can be expressed in the complementary error function\ "erfc# as

s0:1"t# � E 00−00−
E�

E 1"0−et:b erfc"zt:b##1\ t × 9 "65#

and if specializing to a � 0 we obtain

s0"t# � E 00−00−
E�

E 1"0−e−t:b#1\ t × 9 "66#

The expression for the stress relaxation function s0"t# is\ as expected\ the same as the well!known
stress relaxation function corresponding to the Standard Linear Solid[

Figure 1 shows the stress relaxation functions for di}erent a $"9\ 0Ł[ Note that the {{time|| for
approaching the asymptotic value of the stress relaxation function as t : � is strongly dependent
on which fraction order of di}erentiation that is implied in the constitutive behavior[

The creep function "i[e[ the strain response due a unit stress applied at t � 9#\ is obtained in the
same way as stress relaxation function by use of constitutive relation for o"t# on integral form eqns
"37a# and "37b#\
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Fig[ 1[ Normalized stress relaxation functions sa"t#:E vs non!dimensional time t:b[ The in~uence of di}erent values of
a $"9\ 0Ł is shown for E�:E � 0:1[

oa"t# �
0
E 00¦0

E−E�

E� 1"0−Ea ð−"t:l#aŁ#1\ l � b 0
E

E�1
0:a

"67#

Figure 2 shows the creep function for di}erent a $"9\ 0Ł[

6[ Augmenting thermodynamic _elds

Instead of formulating the constitutive equation on integral form or on di}erential operator
form involving derivatives on both stress and strain\ the constitutive equation can be formulated
as coupled equations by introducing internal variables that can be motivated by irreversible
thermodynamics\ see Biot "0845# and Nowick and Berry "0861#[ This model has more recently

Fig[ 2[ Normalized creep function oa:o9 vs non!dimensional time t:b[ Here o9 � s9:E and s9 is the applied stress step[ The
in~uence of di}erent values of a $"9\ 0Ł is shown for E�:E � 0:1[
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been used by Lesieutre and Mingori "0889# and Leisuetre "0881# to model frequency!dependent
material damping in _nite element calculations[

The one!dimensional constitutive equation with one internal variable j"t# can be written as two
coupled equations\ see Lesieutre and Mingori "0889#\

s"t# � Eo"t#−dj"t# "68a#

A"t# � do"t#−gj"t# "68b#

where A"t# is the _eld thermodynamically conjugate to j"t#\ d is the material constant that relates
the two coupled variables o"t# and j"t#\ and g is a material constant[ A reasonable assumption is
that there is a de_nite equilibrium value of j"t# denoted j¹ "t#[ j¹ "t# is the value of j"t# when A"t# � 9\
hence

j¹ �
d

g
o"t# "79#

Assume that dj"t#:dt is proportional to the negative of its deviation from its equilibrium value
j¹ "t#[ The governing equation for the thermodynamical _eld can then be written as

dj"t#
dt

� −
0
b
"j"t#−j¹ "t## � −

0
b 0j"t#−

d

g
o"t#1 "70#

where b is relaxation time[ Since eqn "70# is a di}erential equation it naturally needs an initial
condition[ The following initial condition is consistent with an instantaneous response following
Hooke|s law ðwhich is seen by simply introducing the initial condition into eqn "68a#Ł

j"9# � 9 "71#

Equations "68a# and "70# are su.cient to describe the viscoelastic behavior[ By eliminating j"t#
from eqns "68a# and "70# we obtain

s"t#¦b
ds"t#
dt

� 0E−
d1

g 1 o"t#¦Eb
do"t#
dt

"72#

which is the constitutive equation for the Standard Linear Solid on di}erential operator form with
relaxed modulus E� � E−d1:g[

For materials with weaker frequency dependence of its dynamic properties than the Standard
Linear Solid\ several internal _elds ji representing di}erent internal mechanisms can be introduced[
The governing viscoelastic equations then take the form

s"t# � Eo"t#− s
N

i�0

diji"t# "73a#

dji"t#
dt

�
0
bi 0ji"t#−

di

gi

o"t#1\ i � 0\ [ [ [ \ N "73b#

This form is equivalent to several exponentially decaying memory kernels in the convolution
integral formulation of the constitutive equation[
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Instead of involving several internal variables one might try to include a whole spectrum of
e}ects in one _eld[ The fractional order derivative of this _eld is taken to be proportional to the
negative of its deviation from its equilibrium value\

Daj"t# � −
0

ba 0j"t#−
d

g
o"t#1 "74#

The appropriate initial condition to eqn "74# is

D−"0−a#j"9¦# � 9 "75#

which may be seen by applying the Laplace transform to eqn "74#[ By eliminating j"t# from eqns
"68a# and "74# we obtain

s"t#¦b Das"t# � 0E−
d1

g 1 o"t#¦Eb Dao"t# "76#

which is the same constitutive equation as the fractional derivative constitutive equation on
di}erential operator form eqn "06#[ The coupled equations "68a# and "74# are thus an alternative
form to describe the same constitutive model as the fractional derivative constitutive equation of
viscoelasticity\ eqn "06#\ or the convolution integral constitutive equation\ eqn "24#\ with a memory
kernel according to eqn "28#[

7[ Structural equations of motion

In this section we will discuss and give some remarks on the formulation of the structural
equations of motions when the fractional order derivative model of viscoelasticity is employed for
modeling the damping[ Consider a one!degree of freedom system consisting of a discrete mass and
a viscoelastic spring having a fractional derivative constitutive law[ The dynamic equation for the
mass]

m
d1u"t#

dt1
¦r"t# � R"t# "77#

where m is the mass\ R"t# is the applied force\ r"t# is the force in the viscoelastic spring and u"t# is
the displacement of the mass[ The constitutive equation for the spring can\ e[g[\ be formulated in
one of the two forms]

r"t#¦ba Dar"t# � k�u"t#¦kba Dau"t#\ 9 ³ a ¾ 0 "78a#

r"t# � k"u"t#−" fa ( u#"t## "78b#

where k is the instantaneous sti}ness and k� is the long time or relaxed sti}ness in analogy with E
and E�\ respectively[ fa"t# is the memory kernel according to eqn "28# with E � k and E� � k�[
One way to formulate a single governing equation is to eliminate r"t# by eqns "77# and "78a#[ If
doing so\ the composition rule for fractional derivatives must be employed[ For the case of interest
here\ the composition rule takes the form\ see Oldham and Spanier "0863#
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Da D1u"t# � D1¦au"t#−
t−a−1u"9#
G"−0−a#

−
t−a−0u¾ "9#
G"−a#

"89#

where u¾ denotes one integer di}erentiation with respect to time[ If homogeneous initial conditions
u"9# � u¾ "9# � 9 are assumed the governing equation for the system might take the form

bam D1¦au"t#¦m D1u"t#¦kba Dau"t#¦k�u"t# � R"t#¦ba DaR"t# "80#

This equation is generalized to a N!degree of freedom system\ see Bagley and Torvik "0874#\ and
the resulting _nite element equation becomes

baM D1¦au"t#¦M D1u"t#¦baK Dau"t#¦K�u"t# � R"t#¦ba DaRt "81#

where M\ K and K� are N×N matrices\ R"t# is the applied force vector and u"t# is the displacement
vector[ This form of discretized structural equation is used to solve transient problems in Bagley
and Torvik "0874#\ Bagley and Calico "0880# and recently by Fenander "0885#[

There are three things to notice about eqn "80# ðand eqn "81#Ł[ First\ the use of the composition
rule implies that u"9# � u¾ "9# � 9[ Second\ the order of the force equation eqn "77# has been raised
and by use of the Laplace transform of the fractional order derivative operator it is realized that
the formulation needs initial conditions on

Da−0u"9#\ u"9#\ Dau"9#\ D0u"9#\ Da¦0u"9# "82#

The _rst quantity "82# is in fact a fractional integration and vanishes for any reasonable u"t#\ see
the de_nition of fractional integration in eqn "07#[ "Note\ however\ that e[g[\ D−0:1ðct−0:1Ł has non!
vanishing limit as t : 9¦[#

In any problem u"9# and u¾ "9# should be known but what about the conditions Dau"9# and
Da¦0u"9#< It is tempting to prescribe homogeneous initial conditions but new di.culties will then
be encountered[ Consider a load R"t# that is an eigenfunction to the operator Da with eigenvalue
−0:ba ðcf Section "5[3#Ł[ The resulting di}erential equation is then homogeneous and together with
homogeneous initial conditions it has only the trivial solution[ This means that the part of an
arbitrary load that is an {{eigenfunction|| will not cause any deformation\ and in lack of a condition
that excludes all loads which contain any eigenfunctional component one cannot be sure of having
obtained the correct solution[

It might be argued that even for an eigenfunctional load\ there will be a delta distribution term
in the right hand side of eqn "80# so it is inhomogeneous at t � 9[ This would require interpreting
Da as DÞa\ the distributional derivative[ However\ if homogeneous conditions have been imposed
on all of the quantities in eqn "82#\ and in particular Da¦0"9#\ it is hard to see how the delta term
on the right could be balanced by anything on the left[

Below we will discuss the problems connected to the eigenfunctional load\ as well as with the
impulsive load\ in detail[ However\ before doing so\ and to clarify the discussion above we refer
to the case of a � 0 in eqn "80#\ i[e[\ the spring is assumed to have a constitutive law of a Standard
Linear Solid\ which is discussed in Flu�gge "0864#[ The equation governing the motion\ eqn "80#\
is then of order three and there is a need of initial conditions on u"9#\ u¾ "9# and u� "9#[ Again\ the
initial values of u and u¾ should of course be known\ but what about the acceleration u�< Further\ if
a load that is proportional to e−t:b is applied\ the di}erential equation is homogeneous and in
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combination with homogeneous initial conditions it is obvious that this load will not cause a
deformation[

To avoid the di.culties described above we suggest to include the constitutive equation on
convolution integral form rather than on di}erential form[ By the use of eqns "77# and "78b# the
equation governing the motion of the one!degree of freedom is formulated as

m D1u"t#¦k"u"t#−" fa ( u#"t## � R"t# "83#

This formulation requires initial conditions only on the physical quantities u and u¾[ Further\ the
formulation emphasizes that the whole past of the deformation must be taken into consideration
when solving the equation[ This can be generalized to a N!degree of freedom system in the same
manner as eqn "81#[

7[0[ The initial value problem

Consider the initial value problems for the following three equations in the case of two simple
loads]

m D1u"t#¦k"u"t#−" fa ( u#"t## � R"t#\ t × 9 "84a#

bam D1 ðDau"t#Ł¦m D1u"t#¦kba Dau"t#¦k�u"t# � R"t#¦ba DaR"t#\ t × 9 "84b#

bam D1¦au"t#¦m D1u"t#¦kba Dau"t#¦k�u"t# � R"t#¦ba DaR"t#\ t × 9 "84c#

All three equations are of course intended to model the same physical system[ Equation "84b# has
been derived in the same manner as eqn "84c# but without making unrestricted use of the {{naive||
composition rule[

What are the initial condition appropriate for each of the above equations< Taking the Laplace
transform of each equation indicates that the sets

"u"9¦#\ Du"9¦## "85a#

"Da−0u"9¦#\ u"9¦#\ Du"9¦#\ Da−0 ðD1u"9¦#Ł# "85b#

"Da−0u"9¦#\ u"9¦#\ Du"9¦#\ Dau"9¦#\ Da¦0u"9¦## "85c#

should be the appropriate ones for the respective equations ðset "85a# for eqn "84a#\ etcŁ[ Note that
the set in eqn "85b# has one condition less than the set in eqn "85c#[

It might be argued\ as discussed in the previous section\ that homogeneous initial conditions
must be prescribed on all of the quantities in the sets in eqns "85a\b\c#[ An argument for this would
be that any other conditions presuppose a previous displacement history[ However\ any values of
at least the two physical initial conditions can be accomplished in an arbitrarily short time interval
preceding t � 9 by applying su.ciently large forces[ Thus application of an impulsive load at t � 9
is equivalent ðat least as far as eqn "84a# is concernedŁ to specifying a non!vanishing value of
Du"9¦# � v9 "but zero displacement# at t � 9¦[ Similarly the application of a delta function
derivative load at t � 9 is equivalent to specifying a non!vanishing value of u"9¦# � u9 "but zero
velocity# at t � 9¦[ A consequence of this is the freedom to specify any _nite physical initial values
u"9¦# and Du"9¦#\ as they can be accomplished through combinations of those loads[
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7[0[0[ Ei`enfunctional load
It is in fact straightforward to show that there even exist cases where a _nite but non!zero initial

condition on the highest order derivatives in eqns "85b# and "85c# is necessary[ Consider the case
of an eigenfunctional load\ i[e[\

R"t# �
C9

"0−k�:k#
fa"t# "86#

Here fa is the same as in eqn "28# but with E � k and E� � k�[ The right hand sides of eqns "84b#
and "84c# vanish for this load\ and homogeneous initial conditions on all of the quantities of eqns
"85b# and "85c# would yield only the trivial solution[ However\ the right hand side of eqn "84a#
does not vanish for this load[ To be speci_c\ consider the case of a � 0:1 and assume homogeneous
initial conditions on the physical quantities of eqn "85a#[ A straightforward application of the
Laplace transform to eqn "84a# yields the solution

u"s# � u0"s# �
C9

ms1"0¦"bs#0:1#¦k�¦k"bs#0:1
"87#

This solution can be expanded in an asymptotic series as s : �

u0"s# ½
C9

mb0:1s4:1
−

C9

mbs2
¦

C9

mb2:1s6:1
¦O 0

0

s31 "88#

A term!wise Laplace inversion yields the _rst few terms in a series expansion of u0"t# for small
times as

u0"t# �
3C9t"t:b#0:1

2zpm
−

C9t"t:b#
1m

¦
7C9t"t:b#2:1

04zpm
¦O"t2# "099#

which satis_es the initial conditions]

D0:1−0u0"9¦# � u"9¦# � D0:1u0"9¦# � Du0"9¦# � 9 "090a#

and

D0¦0:1u0"9¦# �
C9

b0:1m
"090b#

In this case also

D0:1−0 ðD1u0"9¦#Ł �
C9

b0:1m
"090c#

7[0[1[ Impulsive load
Consider the case of an impulsive load applied at time t � 9 "R"t# � F9d"t##[ As far as eqn "84a#

goes this is equivalent to having a zero load and specifying a non!vanishing initial velocity\ but
zero displacement at t � 9¦\ and the data of the problem under consideration can be formulated
as
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R"t# � 9\ t × 9

u"9¦# � 9

Du"9¦# � v9 �
F9

m
"091#

A straightforward application of the Laplace transform to eqn "84a# again yields a solution which
can be expanded for small times as

u1"t# � v9t−
v9kt2

5m
¦

05v9"k−k�#t2"t:b#0:1

094bmzp
¦O"t3# "092#

What are the initial conditions corresponding to this solution< The unrestricted use of the com!
position rule when deriving eqn "84b# in this case entailes initial conditions which cannot be met
by the displacement due to an impulsive load[ Of the set in eqn "85c# we have from eqn "092# that

D0:1−0u1"9¦# � u1"9¦# � D0:1u1"9¦# � 9\ Du1"9¦# � v9 "093#

However\ and this is the interesting point\ we _nd that

D0¦0:1u1"9¦# � � "094#

so the set in eqn "85c# is in a sense incompatible with the displacement due to an impulsive load[
If eqn "84c# with a derivative of the form DaðD1Ł had been used instead\ this problem would not
have appeared[ This is so because the required highest order initial condition in eqn "85b# turns
out to be _nite and in fact vanishes]

D0:1−0 ðD1u1"9¦#Ł � 9 "095#

The use of either of the two formulations eqns "84b# and "84c# also calls for some delicacy in
the use of the Laplace transform] there is\ even for the case of the eigenfunction load\ reason to
consider carefully whether the Laplace transform is to be taken from t � 9¦ "as done here# or
from t � 9− "which would require initial conditions at t � 9−#\ and correspondingly whether the
fractional derivative is D � 9−D or D � 9¦D[ This has implications for the presence or absence of
unbalanced singular terms in the two eqns "84b# and "84c#[ In the case of eqn "84a# none of these
questions are at all problematic[

We can thus conclude the following] eqn "84a# is the simplest to use when considering initial
value problems for a fractional calculus viscoelastic system\ since it not only requires only two
initial conditions\ but these are the {{physical|| ones\ displacement and velocity[ Equations "84b#
and "84c# on the other hand require more conditions\ and these are conditions on {{unphysical||
quantities[ The simple remedy of making all such conditions homogeneous is not available\ as seen
from the two examples above\ and in the case of the impulsive load the set of initial conditions for
eqn "84b# requires one initial value to be in_nite\ an awkward situation to say the least[

In the case of eqn "84a# we have the freedom to consider certain displacements as arising either
from initial conditions or from the application of concentrated loads\ the same freedom is restricted
in the case of eqns "84b# and "84c#[ In the case of the latter two equations one must carefully
consider whether the convolution integrals de_ning the fractional derivatives are to be taken from
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t � 9¦ or t � 9−\ and similarly for the Laplace integrals\ if solving by means of such transform\
as all this has implications for the singularities of the equations as well as for the choice of initial
conditions[

8[ Computational algorithm

In this section we present a time discretization scheme for solving the structural equation for
transient loaded fractional viscoelastic spring!mass system[ A governing equation involving the
convolution integral constitutive relation\ see eqn "83#\ is used[

The basic idea is to use the expression for the fractional order derivative of the convolution
term\ Da" fa ( u#"t#\ derived in Section "5[3#\ eqn "45# in connection with Newmark|s method for
time discretization[ The numerical di}erentiation of fractional order is approximated by use of a
suitable truncation of the Gru�nwald algorithm for di}er integration "i[e[ fractional di}erentiation
or fractional integration# as\ see Oldham and Spanier "0863#\

ðDa" fa ( u#Łn¦0 �
0

Dta $" fa ( u#n¦0¦ s
n

j�0

Bj"a#" fa ( u#n¦0−j% "096#

with

Bj"a# �
G" j−a#

G"−a#G" j¦0#
"097#

It is then assumed that the spacing in time is uniform "i[e[ " fa ( u#n �" fa ( u#"nDt##[ This approxi!
mation is accurate also for small n as long as the time increment Dt is small enough[ There are
several other algorithms for numerical fractional di}erentiation\ Oldham and Spanier "0863#^ one
of these might be more e.cient than eqn "096#[ The e.ciency of these di}erent algorithms will not
be investigated at present[ With the application of the Backward Euler rule "in time# to the
expression for the fractional derivative of the convolution ðeqn "45#Ł together with approximation
of the fractional derivative of the convolution term ðeqn "096#Ł\ we obtain an approximation of
the convolution term as

" fa ( u#n¦0 �
"Dt#a

"Dt#a¦ba $
k−k�

k
un¦0−0

b
Dt1

a

s
n

j�0

Bj"a#" fa ( u#n¦0−j% "098#

with the initial value " fa ( u#"9# � 9[ The calculations of the ratios between gamma functions are
simpli_ed by use of the recursion formula]

G" j−a#
G" j¦0#

�
" j−0−a#

j
G" j−0−a#

G" j#
"009#

From the expression\ eqn "098#\ above it is seen that the complete history of the convolution
term should be saved and included in the sum in each time step[ In reality\ the sum must of course
be truncated[ One thing that is worth noticing is that no explicit evaluation of the memory kernel
is needed\ which is a desirable feature[
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8[0[ Structural response

Newmark|s scheme is one of the simplest and most popular schemes for time integration of the
structural response[ It has here used due to its simplicity[ The displacement and _rst order time
derivative are expanded as "see Cook et al[\ 0878#

un¦0 � un¦Dtun¦
"Dt#1

1
ð"0−1b#u�n¦1bu�n¦0Ł "000a#

and the nodal velocities from

u¾n¦0 � u¾n¦Dtð"0−g#u�n¦gu�n¦0Ł "000b#

where b and g are chosen to control stability and accuracy[ This together with the discretized
dynamic equation "evaluated at the end of each time step#\

mu�n¦0¦kðun¦0−" fa ( u#n¦0Ł � Rn¦0 "001#

and initial conditions on u"9#\ and u¾ "9#\ and the discretized expression for the convolution term
" fa ( u# ðeqn "098#Ł makes it possible to calculate the four unknowns] un¦0\ u¾n¦0\ u�n¦0 and " fa ( u#n¦0[
A suitable scheme is as follows]

, Calculate u� "9# from the dynamic equation\ eqn "001#[
, By combining eqns "000a#\ "001# and "098#\ un¦0 is solved from the expression]

un¦0 � A 0dn¦Dtu¾n¦
"Dt#1

1
"0−1b#u�n¦"Dt#1bm−0Rn¦0

−
"Dt#1bba

"Dt#a¦ba
m−0k s

n

j�0

Bj"a#" f ( u#n¦0−j1 "002#

with

A � $0¦"Dt#1bm−0 0k−
"Dt#a

"Dt#a¦ba
"k−k�#1%

−0

, Solve " fa ( u#n¦0 from eqn "098#[
, Solve u�n¦0 from eqn "001#[
, Solve u¾n¦0 from eqn "000b#[

In the undamped case the stability conditions can be found in\ e[g[\ Cook et al[ "0878#[
Letting b � 9\ which is referred to as {{nearly|| explicit in Newmark|s algorithm\ produces a very

simple scheme to calculate the four unknowns]

, Calculate u� "9# from the dynamic equation\ eqn "001#[
, Solve un¦0 from eqn "000a#[
, Solve " fa ( u#n¦0 from eqn "098#[
, Solve u�n¦0 from eqn "001#[
, Solve u¾n¦0 from eqn "000b#[
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In the undamped case and b � 9 the algorithm is known to be conditionally stable for g − 0:1 and
the critical time step is

Dtcrit �
0

vmaxzg:1
"003#

here is vmax the "highest# undamped natural frequency[ For the one!degree of freedom
vmax � zk:m[ This critical time step is conservative for the viscoelastic structure since the vis!
coelastic spring weakens with increasing time which results in decreasing vmax[ Stability and
possible faster algorithms such as multi!steps methods will not be discussed further at present[

8[1[ Numerical examples

In this section a few numerical examples for a transiently loaded viscoelastic one!degree of
freedom system are presented to demonstrate the algorithm described above[ A {{nearly|| explicit
scheme with b � 9 and g � 0:1 is used[ The time step chosen are su.ciently smaller than the
critical time step in the undamped case ðeqn "003#Ł[ Numerical values used for the one!degree of
freedom system under consideration are m � 0 kg\ k � 1 Nm and k�:k � 0:1[ Di}erent values of
the relaxation times "b# are used[

Consider _rst the case of a � 0:1 and b � 0 s which enables us to compare the numerical results
obtained by the algorithm presented above and the time series expansions of the analytical solutions
according to eqns "099# and "092# for the cases of eigenfunctional loading and impulsive loading\
respectively[ Figure 3 shows the numerically obtained displacement solution and the time series
expansion in the case of eigenfunctional load with amplitude C9 � 0 Ns[ In Fig[ 4\ the numerically
obtained displacement solution and the time series expansion in the case of unit impulsive loading
are displayed[ As seen in Figs 3 and 4\ the agreement between the numerical solutions and the time

Fig[ 3[ Displacement vs non!dimensional time t:b for viscoelastic one!degree of freedom system "with a � 0:1# subjected
to a unit eigenfunctional load at time t � 9[ Dotted and dashÐdotted line represent time series expansions of analytic
solution using three terms and nine terms in the series\ respectively[ Time series are valid for short times[
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Fig[ 4[ Displacement vs non!dimensional time t:b viscoelastic one!degree of freedom system "with a � 0:1# subjected to
a unit impulse load at time t � 9[ Dotted and dashÐdotted line represent time series expansion of analytic solution using
three terms and nine terms in the series\ respectively[ Time series are valid for short times[

Fig[ 5[ Displacement vs non!dimensional time t:b for viscoelastic one!degree of freedom system subjected to a unit
impulse load at time t � 9[ The in~uence of di}erent values of the fractional derivative exponent a is shown[

series expansions are good for short times\ indicating that the algorithm is accurate[ For longer
times\ the solutions deviate because the time series expansions are no longer valid[

In Figs 5 and 6 we use di}erent values of the fractional derivative exponent a $"9\ 0# and b � 9[91
s[ Figure 5 shows numerical displacement solution in the case of a unit impulse load applied at
time t � 9[ As seen in Fig[ 5\ oscillations are more damped with increasing value of the fractional
derivative exponent[ Figure 6 shows normalized displacement solution in the case of a unit step
load applied at time t � 9\ displacement is normalized with the quasi!static long time displacement
"i[e[\ ustat � R:k � 0 m#[
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Fig[ 6[ Normalized displacement u:ustat vs non!dimensional time t:b for viscoelastic one!degree of freedom system
subjected to a unit step load at time t � 9[ The in~uence of di}erent values of the fractional derivative exponent a is
shown[

09[ Conclusions

In the present paper we have discussed some of the restrictions that must be put on material or
constitutive models to describe damping[ There are\ as we have emphasized\ a number of pitfalls
which must be avoided\ in particular if one insists in doing the modeling in the frequency domain[
Some properties which are easy to verify in the time domain\ become concealed in the frequency
domain and much harder to recognize[ Our conclusion is that it is essential to keep a time domain
perspective on the modeling of damping[

Some damping models have been commented on in more detail[ Regarding the Standard Linear
Solid model\ we have emphasized that it is equivalent to two other formulations[ The other model
we have focused on\ the fractional derivative damping model\ exhibits a number of interesting
features[ Also for this model we have pointed out that is equivalent to at least two other formu!
lations\ including an internal variable model[ Emphasis has been put on the properties of the
memory kernel corresponding to the fractional derivative model[ An outcome of this analysis is a
result on the time evolution of convolutions involving the memory kernel[ For applications to
structural dynamics a time discretization of this result is shown to be potentially very useful[
Regarding the higher order equations that have been used in connection with structural dynamics
applications of the fractional derivative model we have pointed out some di.culties[
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